

American Journal of Pharmaceutics

australiainsciencejournals.com/pharmaceutics

E-ISSN: 2689-0259

VOL 02 ISSUE 03 2021

Improving Drug Solubility: Techniques and Technologies

Dr. Ayesha Khalid

Department of Pharmaceutics, Faculty of Pharmacy, University of Karachi, Pakistan

Email: ayesha.khalid@uok.edu.pk

Abstract: Poor solubility of drug candidates remains one of the major challenges in pharmaceutical development, directly impacting bioavailability and therapeutic efficacy. This paper explores current and emerging techniques to enhance the solubility of poorly water-soluble drugs, including particle size reduction, solid dispersions, salt formation, complexation, lipid-based systems, and novel nanotechnologies. Emphasis is placed on the molecular basis of solubility enhancement, formulation considerations, and selection criteria for appropriate technologies. This review also highlights case studies where solubility improvement has led to enhanced pharmacokinetics and clinical success. Future directions in precision solubilization using AI-guided formulation and 3D printing technologies are discussed.

Keywords: Drug solubility, bioavailability enhancement, nanotechnology, solid dispersions, complexation, lipid-based delivery, formulation techniques, poorly soluble drugs

Introduction:

Solubility is a key physicochemical property influencing a drug's absorption, distribution, and ultimately its clinical efficacy. Nearly 40% of approved drugs and over 70% of new drug candidates are poorly water-soluble, posing significant hurdles in oral drug delivery. Enhancing solubility is therefore critical for ensuring therapeutic success, especially for BCS Class II and IV drugs. Advances in formulation science have enabled several

physical, chemical, and nanotechnological strategies for addressing solubility challenges. This article reviews both conventional and novel methods employed to improve drug solubility, their mechanisms, advantages, and limitations, with particular focus on translational outcomes.

1. Physical Modification Techniques

One of the most fundamental and widely used approaches to enhance the solubility of poorly water-soluble drugs is physical modification, particularly through particle size reduction. The principle is based on the Noyes–Whitney equation, which states that the dissolution rate of a substance is directly proportional to its surface area. Reducing particle size significantly increases the surface area-to-volume ratio, allowing the drug to dissolve more readily in gastrointestinal fluids.

• Particle Size Reduction: Micronization and Nanonization

Micronization involves reducing drug particles to micrometer-sized ranges (typically 1–10 μm) using methods such as jet milling or fluid energy milling. This technique is simple, scalable, and widely used for BCS Class II drugs.

Nanonization, in contrast, reduces particles to submicron or nanometer scales ($<1 \mu\text{m}$), often resulting in enhanced saturation solubility and dissolution rates. Nanoparticles can also improve mucosal adhesion and facilitate cellular uptake.

• Role of Surface Area in Dissolution Rate Enhancement

The increased surface area leads to a higher interaction with the dissolution medium, reducing the diffusion layer thickness and enhancing the concentration gradient across the boundary layer. This improved wettability is particularly beneficial for hydrophobic drugs, which otherwise have poor interaction with aqueous media.

• High-Pressure Homogenization and Media Milling

High-pressure homogenization is a top-down approach where a drug suspension is forced through a narrow valve under high pressure (up to 2000 bar), leading to particle size reduction via cavitation and shear forces. Products like Emend® (aprepitant) have utilized this technology successfully.

Media milling (e.g., wet ball milling) involves grinding drug particles in the presence of milling media and stabilizers. This technique is cost-effective and suitable for scale-up but requires careful stabilization to avoid agglomeration.

These physical methods have been proven effective for a wide range of poorly soluble drugs and often serve as the first step before more complex formulation strategies are explored.

2. Chemical Modification Approaches

Chemical modification is a powerful strategy to enhance the solubility and dissolution of active pharmaceutical ingredients (APIs), especially when physical methods alone are insufficient. These approaches involve altering the chemical structure or form of the drug to improve its physicochemical properties without compromising therapeutic efficacy.

• Salt Formation for Weak Acids and Bases

Salt formation is one of the most classical and effective techniques for improving the aqueous solubility of ionizable drugs.

Weak acids (e.g., ibuprofen) can form salts with strong bases (e.g., sodium hydroxide), and weak bases (e.g., amlodipine) with strong acids (e.g., hydrochloric acid).

The resulting salts often exhibit significantly higher solubility and better dissolution profiles due to improved ionization and hydration.

Around 50% of marketed drugs exist in salt form because salts often demonstrate better stability, manufacturability, and bioavailability.

• Use of Prodrugs and Polymorphic Transformations

Prodrugs are chemically modified derivatives of a parent drug designed to improve solubility, permeability, or stability. After administration, they are enzymatically or chemically converted into the active form.

Example: Valacyclovir, a prodrug of acyclovir, exhibits better solubility and oral bioavailability.

Polymorphic transformations involve changing the crystalline form of the drug. Some polymorphs may have lower lattice energy and thus higher solubility.

However, polymorph screening is essential to ensure stability, as metastable forms may revert to less soluble ones over time.

• Solubilizing Functional Groups and Molecular Modifications

Chemical modification of the drug molecule by adding polar or ionizable functional groups (e.g., hydroxyl, carboxyl, or amine groups) can enhance aqueous solubility.

Modifications may also include the use of hydrophilic side chains or spacers that enhance drug–water interactions.

Computational modeling and structure–property relationships (SPR) are increasingly used to guide such modifications while preserving pharmacological activity.

Chemical modification techniques are especially valuable during early drug discovery and lead optimization phases, offering a route to optimize solubility from a molecular perspective before moving on to formulation-based strategies.

3. Formulation-Based Strategies

Formulation-based strategies focus on manipulating the drug's environment within the dosage form to enhance solubility and dissolution without altering its chemical structure. These approaches have become indispensable tools in the development of oral formulations for poorly soluble drugs.

• Solid Dispersions (Eutectic and Amorphous Forms)

Solid dispersions involve the dispersion of a poorly soluble drug into a hydrophilic polymer matrix such as PVP, HPMC, or PEG. Eutectic mixtures are crystalline in nature but offer better dissolution due to decreased lattice energy.

Amorphous solid dispersions (ASDs) are more effective since the drug exists in a high-energy, non-crystalline state, which increases solubility and dissolution rate significantly.

Common techniques include solvent evaporation, hot-melt extrusion, and spray drying.

Example: Itraconazole ASD (Sporanox) shows improved oral absorption compared to crystalline forms.

• Complexation with Cyclodextrins and Other Carriers

Cyclodextrins (CDs) are cyclic oligosaccharides that form inclusion complexes with hydrophobic drug molecules.

This enhances aqueous solubility, chemical stability, and taste masking without changing the drug's core structure.

Common types include β -CD, hydroxypropyl- β -CD (HP- β -CD), and sulfobutyl ether- β -CD (SBE- β -CD).

Example: Hydrocortisone-CD complex improves solubility and stability for topical and oral delivery.

Newer carriers include polymeric micelles, dendrimers, and mesoporous silica nanoparticles that encapsulate drugs and enhance their dissolution profile.

• Co-crystals and Their Impact on Dissolution Kinetics

Pharmaceutical co-crystals are crystalline materials composed of an API and a co-former (generally a GRAS compound) held together by non-covalent interactions.

They provide improved solubility and dissolution by altering the crystal lattice energy and enhancing water interaction without altering the drug molecule.

Example: Co-crystal of carbamazepine and saccharin exhibits better solubility and bioavailability than pure carbamazepine.

Co-crystals are particularly promising because they are considered as new forms of existing drugs and are increasingly supported by regulatory bodies.

Formulation-based approaches are versatile, cost-effective, and adaptable to a range of administration routes, making them essential for translating poorly soluble APIs into clinically successful drugs.

4. Lipid and Nanotechnology-Based Systems

Lipid-based and nanotechnology-driven delivery systems are among the most advanced approaches to tackle poor aqueous solubility and enhance the oral bioavailability of lipophilic drugs. These systems leverage biological compatibility, nanoscale engineering, and high surface-area-to-volume ratios to improve drug dispersion, absorption, and stability.

• Self-Emulsifying Drug Delivery Systems (SEDDS)

SEDDS are isotropic mixtures of oils, surfactants, and co-solvents that spontaneously emulsify in the gastrointestinal tract upon mild agitation.

Upon contact with GI fluids, SEDDS form oil-in-water emulsions or microemulsions, solubilizing lipophilic drugs and enhancing absorption.

Benefits include improved dissolution rate, reduced variability, and enhanced lymphatic transport, bypassing first-pass metabolism.

Example: Neoral, a SEDDS formulation of cyclosporine, significantly improved oral bioavailability over its conventional counterpart.

• Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles

Liposomes: Spherical vesicles composed of phospholipid bilayers; can encapsulate both hydrophilic and lipophilic drugs. Enhance solubility, reduce toxicity, and prolong circulation time. Used in formulations like Doxil (liposomal doxorubicin).

Nanoemulsions: Thermodynamically stable colloidal systems with droplet sizes between 20–200 nm.

Improve solubilization and absorption of hydrophobic drugs; especially suitable for oral, ocular, and dermal delivery.

Solid Lipid Nanoparticles (SLNs): Comprise solid lipids and surfactants to entrap poorly soluble drugs in a solid matrix.

Offer sustained release, enhanced permeability, and stability in biological fluids.

Have shown promise in enhancing oral and brain bioavailability of phytochemicals like curcumin.

• **Case Studies:** Improvement in Oral Bioavailability

Cyclosporine (Neoral): Transition from oil-based solution to SEDDS improved absorption consistency and bioavailability by nearly 200%.

Curcumin: Known for low bioavailability, curcumin incorporated into SLNs and nanoemulsions has demonstrated a 6–10 fold increase in plasma concentration in preclinical studies.

Paclitaxel (Lipusu): A liposomal formulation showing reduced toxicity and enhanced solubility of this highly hydrophobic anticancer drug.

These advanced systems not only enhance solubility but also address challenges like drug degradation, first-pass metabolism, and site-specific delivery, making them vital for modern pharmaceutical development, particularly for oncology, neurology, and infectious diseases.

5. Emerging and Future Technologies

Recent advances in pharmaceutical engineering, artificial intelligence, and regulatory science are paving the way for next-generation strategies in drug solubility enhancement. These emerging technologies aim to provide precision, personalization, and efficiency in formulation design, ensuring better therapeutic outcomes

3D Printing for Customizable Solubilized Formulations

3D printing (additive manufacturing) enables on-demand production of drug dosage forms with complex geometries, layered drug release, and customized drug loads.

Technologies such as Fused Deposition Modeling (FDM) and Inkjet Printing are being applied to fabricate solubility-enhanced formulations.

Example: Spritam (levetiracetam) is the first FDA-approved 3D printed drug, known for its rapid disintegration and improved bioavailability.

Allows incorporation of amorphous solid dispersions, nanoparticles, and hydrophilic matrices tailored to patient needs.

Supercritical Fluid Technology

Supercritical fluids like supercritical CO₂ serve as environmentally friendly solvents to produce nanoparticles or amorphous solids with improved solubility.

Techniques include:

Rapid Expansion of Supercritical Solutions (RESS)

Supercritical Antisolvent (SAS)

These methods eliminate organic solvent residues and provide better control over particle size and morphology, crucial for enhancing dissolution.

Used for drugs like griseofulvin and naproxen with poor aqueous solubility.

AI-Driven Predictive Modeling in Solubility Optimization

Artificial intelligence and machine learning models are now used to predict solubility based on molecular descriptors and formulation variables.

Helps accelerate formulation screening, reduce cost, and optimize excipients and process parameters.

Tools like QSAR (Quantitative Structure–Activity Relationship) and deep learning networks are being integrated into pharmaceutical R&D pipelines.

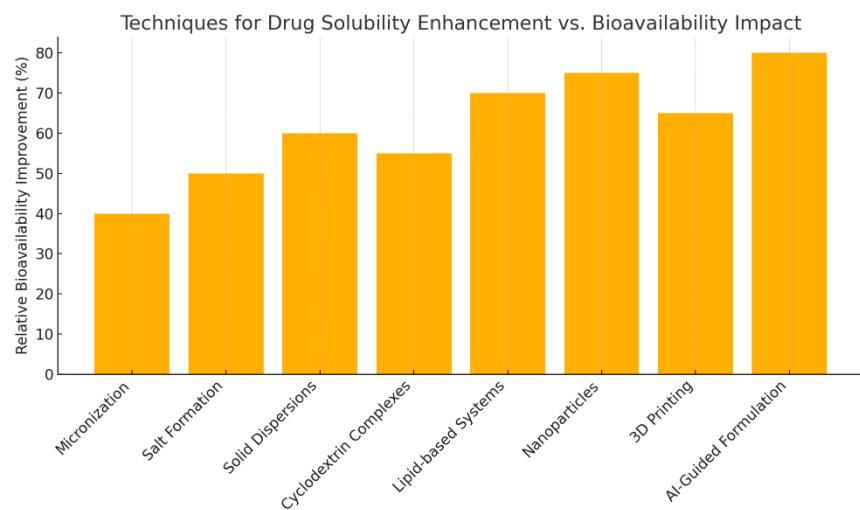
AI-assisted platforms also support personalized medicine by matching solubilization strategies with patient-specific needs.

Regulatory Perspectives and Translational Challenges

Despite technological innovation, regulatory acceptance remains a key bottleneck for novel solubilization methods.

Challenges include:

Ensuring batch-to-batch reproducibility


Addressing long-term stability and scalability

Establishing bioequivalence with reference products

Regulatory agencies such as the FDA and EMA encourage Quality by Design (QbD) and real-time release testing (RTRT) to ensure robustness of advanced drug delivery systems.

Cross-disciplinary validation and patient-centric formulation design will be critical to translating these technologies into viable commercial therapies.

Techniques for Drug Solubility Enhancement vs. Bioavailability Impact

Summary

Improving drug solubility is a pivotal aspect of modern pharmaceutical formulation, directly influencing clinical success. Various physical, chemical, and advanced nanoformulation strategies have been developed, with notable success in enhancing the bioavailability of hydrophobic drugs. While traditional methods like micronization and salt formation continue to be useful, emerging techniques such as lipid-based delivery systems and AI-guided design promise greater precision and efficiency. Translational application of these technologies requires careful evaluation of drug properties, patient compliance, and regulatory acceptability. The future of solubility enhancement lies in integrated, patient-centric, and personalized formulation approaches.

References

- Lipinski, C. A. (2002). Poor aqueous solubility—an industry wide problem in drug discovery. *Advanced Drug Delivery Reviews*, 54(3), 3–26.
- Loftsson, T., & Brewster, M. E. (2010). Pharmaceutical applications of cyclodextrins: basic science and product development. *Journal of Pharmacy and Pharmacology*, 62(11), 1607–1621.
- Serajuddin, A. T. M. (2007). Salt formation to improve drug solubility. *Advanced Drug Delivery Reviews*, 59(7), 603–616.
- Vasconcelos, T., Sarmento, B., & Costa, P. (2007). Solid dispersions as strategy to improve oral bioavailability of

poor water-soluble drugs. *Drug Discovery Today*, 12(23–24), 1068–1075.

- Pouton, C. W. (2006). Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. *European Journal of Pharmaceutical Sciences*, 29(3–4), 278–287.
- Rasenack, N., & Müller, B. W. (2002). Micron-size drug particles: common and novel micronization techniques. *Pharmaceutical Development and Technology*, 7(4), 387–398.
- Liu, R. (2019). *Water-Insoluble Drug Formulation*. CRC Press.
- Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. *International Journal of Pharmaceutics*, 420(1), 1–10.
- Agrawal, A. G., & Kumar, A. (2014). Nanocarriers as novel drug delivery system for anticancer therapy. *International Journal of Pharmacy and Pharmaceutical Sciences*, 6(2), 41–46.
- Jain, A., Date, A. A., & Patravale, V. B. (2011). Lipid-based delivery of antiretroviral drugs: advances and challenges. *Current Drug Delivery*, 8(5), 447–457.
- Homayun, B., Lin, X., & Choi, H. J. (2019). Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. *Pharmaceutics*, 11(3), 129.
- Xu, X., Khan, M. A., & Burgess, D. J. (2017). A quality by design (QbD) case study on liposomes containing hydrophilic API: formulation, processing design, and specifications. *International Journal of Pharmaceutics*, 520(1–2), 217–227.